카테고리

Limit

The limit of a function f(x)f(x) as xx approaches aa is LL if for every ϵ>0\epsilon > 0, there exists a δ>0\delta > 0 such that if 0<xa<δ0 < |x - a| < \delta, then f(x)L<ϵ|f(x) - L| < \epsilon. Symbolically, this is written as:

ϵ>0,δ>0 s.t. 0<xa<δ    f(x)L<ϵ.\forall \epsilon > 0, \exists \delta > 0 \text{ s.t. } 0 < |x - a| < \delta \implies |f(x) - L| < \epsilon.

In this case, we write:

limxaf(x)=L.\lim_{x \to a} f(x) = L.

Sequence

A sequence is a function from the natural numbers to the real numbers. It is usually denoted as (an)(a_n), where nn is a natural number.

Alternative notations:

  • (a1,a2,a3,)(a_1, a_2, a_3, \ldots)
  • (an ⁣:n=1,2,3,)(a_n \colon n = 1, 2, 3, \ldots)
  • (an)n=1(a_n)_{n=1}^{\infty}

When each term of the sequence satisfies a certain condition P, we write:

(an ⁣:P(an)) or (anP(an))(a_n \colon P(a_n)) \text{ or } (a_n \mid P(a_n))

Convergence & Divergence of sequences

When a sequence (an)(a_n) converges to a real number LL, we write:

limnan=L\lim_{n \to \infty} a_n = L

This means that for every ϵ>0\epsilon > 0, there exists a natural number NN such that if n>Nn > N, then anL<ϵ|a_n - L| < \epsilon. Symbollcally, this is written as:

ϵ>0,NN0 s.t. n>N    anL<ϵ.\forall \epsilon > 0, \exists N \in \mathbb{N_0} \text{ s.t. } n > N \implies |a_n - L| < \epsilon.

When a sequence (an)(a_n) diverges, we write:

limnan= or limnan=\lim_{n \to \infty} a_n = \infty \text{ or } \lim_{n \to \infty} a_n = -\infty

Series

A series is a sequence of partial sums of a sequence. Given a sequence (an)(a_n), a series derived from it, is usually denoted as:

n=1an\sum_{n=1}^{\infty} a_n

Or simply:

an\sum a_n